

Critical Review of Mercury Chemistry

Marshall H. Mendelsohn C. David Livengood

Argonne National Laboratory

Scott A. Renninger

National Energy Technology Laboratory

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Objectives of the Review Were To:

- Summarize the current "state-of-theart" of Hg chemistry knowledge in areas important to flue-gas streams from coal-fired boilers
- Identify significant gaps in the knowledge
- Assess the need for further experimental research to resolve gaps and extend the range of data

The Review Approach Involved:

- Identifying the important areas of Hg chemistry for understanding speciation/ emissions/control in flue gas from coal-fired boilers
- Assembling the most relevant documents publicly available, including journal articles, conference papers, patents, etc.
- Critically reviewing the relevant information presented in those documents

Priorities Were Set by Surveying Mercury Research Experts

- Which reaction types are most important? (e.g., gas-phase, liquidphase, gas/liquid)
- Which Hg species are most important? (e.g., Hg⁰, HgCl₂, HgO)
- Which reactants are most important?
 (e.g., HCI, CI₂, SO₂, NO₂)
- What aspect of reaction chemistry is most important? (e.g., mechanisms, kinetics)

The Survey Respondents Helped Focus the Review

- 62% listed gas-phase reactions as most important
- 100% responded that gaseous Hg⁰ was most important mercury reactant
- HCI (62%) and CI₂ (54%) were the two nonmercury reactants most frequently cited
- 100% said mechanisms were the most important aspect of reaction chemistry

Literature Searches Were Conducted Back to 1907

- The earliest relevant paper was in 1949
- Interest in lasers produced several papers in the 70s and 80s on mercury in excited states
- Two of the most important and frequently cited papers were written in '79 and '80
- Renewed interest in the late 80s and early 90s produced several more important papers
- Chemical kinetic models began appearing in the late 90s
- Recent work has added more chemical species and effects of particulate matter

Important Papers Prior to 1989 Included:

- Surface Catalyzed Reaction of Hg + Cl₂, A. K. Medhekar, M. Rokni, D. W. Trainor, and J. H. Jacob, Chem. Phys. Lett., 65 (3), 600-604 (1979); found a fast reaction for Hg⁰ with Cl₂, but attributed this to a surface-catalyzed reaction
- Detection of mercury in air in the presence of chlorine and water vapor, R. Menke and G. Wallis, Am. Ind. Hyg. Assoc. J., 41 (2), 120-124 (1980); found a slow reaction for Hg⁰ with Cl₂; rate constant calculated from the data in this paper is the one most frequently cited (directly or indirectly) in later work

Several Important Papers in the Period 1989 – 1992 Included:

- Mercury Chemistry in Simulated Flue Gases
 Related to Waste Incineration Conditions, B. Hall,
 O. Lindqvist, and E. Ljungstrom, Environ. Sci.
 Technol., 24 (1), 108-111 (1990); cited 39 times in
 ISI's Web of Science; one of the earliest papers to
 propose mechanistic conjectures for formation of
 HgCl₂ in flue gas streams
- Chemical Reactions of Mercury in Combustion Flue Gases, B. Hall, P. Schager, and O. Lindqvist, Water, Air, and Soil Pollut., 56, 3-14 (1991); cited 51 times; proposed mechanisms for reaction of Hg⁰ with both HCl and Cl₂

Important Papers 1989 – 1992 (cont.):

 Reactions Between Mercury Vapor and Chlorine Gas at Occupational Exposure Levels, A. Skare and R. Johansson, Chemosphere, 24 (11), 1633-1644 (1992); cited 5 times; first independent laboratory data that agreed with results of Menke and Wallis, who found a slow homogeneous gas-phase reaction of Hg⁰ with Cl₂

Atmospheric Chemistry Modeling produced these 1991-1998 Papers

- Transformation Processes Involving Mercury
 Species in the Atmosphere Results from a
 Literature Survey, W. H. Schroeder, G. Yarwood,
 and H. Niki, Water, Air, and Soil Pollut., 56, 653-666
 (1991); cited 69 times; first extensive review of Hg
 chemistry relevant to atmospheric modeling
- A Chemical Kinetic Mechanism for Atmospheric Inorganic Mercury, C. Seigneur, J. Wrobel, and E. Constantinou, Environ. Sci. Technol., 28 (9), 1589-1597 (1994); cited 49 times; first extensive model for the atmospheric chemistry of Hg including gasphase, liquid-phase, and gas-solid reactions

Atmospheric Chemistry Modeling 1991-1998 (cont.):

Atmospheric Mercury - An Overview, W.
Schroeder and J. Munthe, Atmospheric
Environment, 32 (5), 809-822 (1998); cited 97
times; contains 103 references; most recent
extensive review of chemical and physical
pathways/processes pertinent to Hg in the
atmosphere

In 2000-2001, A Hg/Cl Reaction Mechanism Was Proposed:

- Between 1998 and 2003, a number of mechanisms were proposed by several researchers
- This particular one has been widely accepted and used in later work as part of an overall homogeneous gas-phase Hg oxidation mechanism
 - 1. $Hg^0 + CI + M < ----> HgCI + M$
 - 2. Hg⁰ + Cl₂ <----> HgCl + Cl
 - 3. Hg⁰ + HCl <----> HgCl + H
 - 4. Hg⁰ + HOCl <----> HgCl + OH
 - 5. HgCl + Cl₂ <----> HgCl₂ + Cl
 - 6. HgCl + Cl + M <----> HgCl₂ + M
 - 7. HgCl + HCl <----> HgCl₂ + H
 - 8. HgCl + HOCl <----> HgCl₂ + OH

Recent Important Papers Include: (2002-2003)

- Reactions of Gaseous Mercury with Atomic and Molecular Halogens: Kinetics, Product Studies, and Atmospheric Implications, P. A. Ariya, A. Khalizov, and A. Gidas, J. Phys. Chem A, 106 (32), 7310-7320 (2002); new, high-quality laboratory measurements of rate constants gave a significantly lower reaction rate than that of Menke and Wallis
- A Mechanism for Mercury Oxidation in Coal-Derived Exhausts, S. Niksa, N. Fujiwara, Y. Fujita, K. Tomura, H. Moritomi, T. Tuji, and S. Takasu, J. Air & Waste Manage. Assoc., 52, 894-901 (2002); first model to include gas-solid interactions along with homogeneous gas-phase mechanisms

Summary

- Review focused on gas-phase homogeneous chemistry of Hg⁰ with Cl₂ and HCl
- More than 300 pages of material were reviewed
- A generally accepted eight-reaction mechanism has been developed for Hg oxidation in coal-derived flue gas
- Up to 2002, rate constant for Hg + Cl₂ reaction was based mainly on 2 papers (Hall, et al., 1991 and Menke, et al., 1980)
- A slow homogeneous reaction was confirmed by Ariya, et al. in 2002 with a rate constant 2 orders of magnitude lower than that derived from Menke and Wallis's data
- Recent modeling points to importance of gas-solid interactions in Hg oxidation

Recommendations

- Models of Hg oxidation should be checked for revised results using new values obtained for reactions of Hg with both Cl₂ and atomic Cl (from Ariya, et al., 2002)
- Other important reactions should be investigated in the laboratory to determine their gas-phase rate constant, such as those for HgCl reacting with either Cl₂ or Cl
- Details of the mechanisms for gas-solid interactions should be investigated (e.g., surface reactions, reaction-site characterization)

Future Work

- Details of the critical review will be given in a topical report that is in preparation
- The review may be extended to include other chemical species and reaction types
- Advanced analytical techniques will be used to study gas-solid interactions

Work supported by the U.S. Department of Energy, Assistant Secretary for Fossil Energy, under contract W-31-109-ENG-38

